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Definitions of Failure

Definition

Failure is any action lead-
ing to an inability of the
structure (or its compo-
nents) to function in the
manner intended.
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Types of Failure

Types (or Modes) of Failure

* Excessive elastic deformations

* Permanent deformation P P
(or yielding) :
* Fracture

— Brittle (e.g., concrete,
stone, glass)

— Ductile (e.g., mild steel,
aluminum,copper)

— Progressive - fatigue
* Instability
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Factors Affecting Mode
of Failure

Characteristics of structural member
- material
- geometry and shape

Loading
- loading configuration and rate
- surrounding media




Uniaxial versus Multiaxial

(combined loading) cases

* For uniaxial stress (and loading) the onset
of failure (by yielding or fracture) can be
predicted from the stress-strain diagram.

* For multiaxial (combined loading) case,
a response quantity (stress, strain or energy)
associated with failure is chosen.

— A maximum (or critical) value of the
quantity is selected to predict the onset
of failure

— A uniaxial (or torsion) test is used to
determine the maximum (or critical) value.

3.5 Yielding and Fracture Criteria
for Multiaxial Stress State

3.5.1 Maximum Principal Stress
Theory

3.5.2 Maximum Strain Theory

3.5.3 Maximum Shear Stress Theory

3.5.4 Maximum Total Strain Energy
Theory

3.5.5 Maximum Energy of Distortion
Theory

3.5.6 Maximum Octahedral Shear
Stress Theory




Maximum Principal Sress

Theory

Maximum Principal Stress Theory
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* Fracture is assumed to occur at a point
when the maximum principal stress at that
point reaches the ultimate stress in simple
tension or compression, for the material.
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* The criterion is suitable for
brittle materials.
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Maximum Strain Theory

(St. Venant's Theory)

* Yielding is assumed to begin at a point
when the maximum strain at that point
reaches a value equal to that of the yield
strain in a simple tension test.

* In terms of principal strains
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Maximum Strain Theory
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Maximum Shear Stress

Theory

(Coulomb'’s, Tresca's or Guest's Theory)

* Yielding is assumed to begin at a point when
the maximum shear stress at that point equals
the shear stress at the yield point in a simple

tension test. % N
« In terms of principal stresses ‘_—_’
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Tmax = i O yield

* At the onset of yielding

|lc'—c"|= G yield

* The criterion is suitable for
ductile materials.




Maximum Shear Stress

* Two-dimensional stress state ©

T

-if © ' and 0‘" have the same sign, then

or

-if c! and ¢! have opposite signs, then
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Maximum Total Strain
Energy Theory

(Beltrami and Haigh's Theory)

* Yielding is assumed to begin at a point when
the total strain energy density at that point
reaches a value equal to the strain
energy density in uniaxial tension (or
compression).

* In terms of principal stresses, the total
strain energy density
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* In uniaxial tension




Maximum Total Strain

Energy ITheory

* In terms of principal stresses, the total
strain energy density
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* |[n uniaxial tension
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Maximum Energy of

Distortion Theory

(Von Mises, Huber, Hencky Theory)

* Yielding is assumed to begin at a point when
the distortional energy density (strain energy
density associated with the change in shape -
in terms of the deviatoric stresses and strains)
at that point reaches a value equal to the
distortional strain energy at yield in uniaxial
tension (or compression).

* In terms of principal stresses
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Maximum Energy of

Distortion Theory

* In terms of principal stresses
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Maximum Energy of
Distortion Theory

*» Two-dimensional state of stress, olll =0
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Maximum Octahedral Shear

Stress Theory
* Yielding is assumed to begin at a point
when the shearing stresses on the octahedral
planes at the point reach a value equal to the
octahedral shearing stress in uniaxial tension
(or compression).
* In terms of principal stresses
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Maximum Octahedral Shear

Stress Theory

* In terms of principal stresses
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Maximum Octahedral Shear

Stress Theory

» Two-dimensional case, o =0
(o!)%- s+ (62 = (0yicta)?

same as the maximum energy of distortion
theory

* For the torsion test Trmax = “i";"

- Maximum shear stress theory
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Maximum Octahedral Shear

Stress Theory

- Maximum energy of distortion

Ugist. = 21('.-‘:( Iyield)z
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- Maximum octahedral shear stress
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Shaft Subjected to Combined

Axial Force and Twisting Moment

* Normal Stresses
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uniformly distributed over the cross section.
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Shear stresses are maximum at the perimeter
of the cross section.







Shaft Subjected to Combined

Axial Force and Twisting Moment

« Maximum Principal Stresses

Occur at the perimeter of the cross section.

Stress Matrix

OT.
T - -

[o]=




Shaft Subjected to Combined

Axial Force and Twisting Moment

* Principal Stresses

« Maximum Shear Stress
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Shaft Subjected to Combined

Axial Force and Twisting Moment

uniaxial stress state

Tmax = 2 Oyield

Therefore,




Shaft Subjected to Combined

Axial Force and Twisting Moment

» Volumetric and Deviatoric Stress Components
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« Strain Energy Densities
Uiot= 3 * 3

Shaft Subjected to Combined
Axial Force and Twisting Moment

« Strain Energy Densities
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Shaft Subjected to Combined

Axial Force and Twisting Moment

For uniaxial stress state
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Shaft Subjected to Combined
Axial Force and Twisting Moment
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Application of Failure Theories
to Design

* A margin of safety is introduced in the design.

* Factor of safety, f, is the ratio of the failure
load to the design load.

» Stresses are assumed to be proportional to the
loads. Therefore,

failure stress

f=
design stress




Application of Failure Theories

to Design

* Maximum principal stress theory

1

Cdesign — ?Gyield

* Maximum strain theory
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Application of Failure Theories

to Design

* Maximum shear stress theory

Tension test

1
Tdesign ~ Eoyield
Torsion test
1
Tdesign ~ ?Gyield




Application of Failure Theories

to Design

* Maximum total strain energy theory

2
1 | Ovield

Udesign = f

Application of Failure Theories

to Design

« Maximum energy of distortion theory|

Tension test 7
U _ 1 | Oyield
dist. .
design 60 f
Torsion test 2
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Application of Failure Theories

to Design

« Maximum octahedral shear stress theory

Tension test
N 2 Oyield

design 3 f

Toct.

Torsion test
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